Российские и японские физики впервые в мире синтезировали квантовый металл (4 фото)
Категория: Интересные фоторепортажи
5 июня 2017
Исследователи впервые смогли показать возможность существования нормального металлического состояния не в трех, а в двух измерениях.
Новый материал в зависимости от условий может быть как нормальным металлом, так и изолятором или, наоборот, сверхпроводником. Исследование причин такого явления может быть полезно для создания сверхпроводящих материалов, работающих при комнатных температурах.
Как выглядит новый материал и почему он квантовый?
Новый материал представляет собой тонкую пленку из двойного слоя атомов таллия, нанесенных на кремниевую подложку. Такой материал называется двумерными поскольку толщина пленки таллия пренебрежимо мала по сравнению с двумя другими ее измерениями - длиной и шириной. Из-за малых размеров системы большую роль в ней играют квантовые эффекты.
При температурах ниже 0,96 К (или - 272°C), а также одновременном воздействии магнитного поля этот материал может менять свои свойства. В сильном магнитном поле он становится изолятором, в слабом - сверхпроводником, а при полях промежуточной величины остается металлом. Такое необычное поведение уже предсказывалось ранее теоретически, но до этого никогда не наблюдалось экспериментально.
Ценность открытия
"Более трех десятилетий не утихает научная дискуссия о том, что произойдет двумерным металлом при приближении к абсолютному нулю температуры: останется ли она металлом и будет ли проводить электрический ток? Наши эксперименты впервые показали, что помимо перехода в изолирующее или сверхпроводящее состояние двумерная система может оставаться нормальным металлом. Это необычное состояние было названо квантовым металлом", - сообщил один из авторов работы, член-корреспондент РАН и сотрудник ДВФУ, Александр Саранин.
Таким образом, ученые впервые показали возможность существования нормального металлического состояния не в трех, а в двух измерениях.
По словам исследователей, "изучение природы этого явления со временем может пригодиться, например, для создания сверхпроводников, работающих при комнатных температурах".
В работе участвовали ученые из ДВФУ, Института автоматики и процессов управления Дальневосточного отделения РАН и Университета Токио (Япония). Результаты исследования опубликованы в престижном международном научном журнале 2D Materials.